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Abstract
Introduction and objective. Head and neck injuries are a heterogeneous group in terms of both clinical course and 
prognosis. For years, there have been attempts to create an ideal tool to predict the outcomes and severity of injuries. The 
aim of this study was evaluation of the use of selected artificial intelligence methods for outcome predictions of head and 
neck injuries.   
Material sand Method. 6,824 consecutive cases of patients who sustained head and neck injuries, treated in hospitals in 
the Lublin Province between 2006–2018, whose data was provided by National Institute of Public Health / National Institute 
of Hygiene, were analyzed retrospectively. Patients were qualified using International Statistical Classification of Diseases 
and Related Health Problems (10th Revision). The multilayer perceptron (MLP) structure was utilized in numerical studies. 
Neural network training was achieved with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.   
Results. In the designed network, the highest classification efficiency was obtained for the group of deaths (80.7%). The 
average value of correct classifications for all analyzed cases was 66%. The most important variable influencing the prognosis 
of an injured patient was diagnosis (weight 1.929). Gender and age were variables of less significance with weight 1.08 and 
1.073, respectively.   
Conclusions. Designing a neural network was hindered due to the large amount of cases and linking of a large number of 
deaths with specific diagnosis (S06). With a predictive value of 80.7% for mortality, ANN can be a promising tool in the future; 
however, additional variables should be introduced into the algorithm to increase the predictive value of the network. Further 
studies, including other types of injuries and additional variables, are needed to introduce this method into clinical use.
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INTRODUCTION

Head and neck injuries constitute a serious health and socio-
economic problem worldwide [1]. According to statistical 
data published by the CDC, head and neck injuries account 
for 4–16% of all trauma hospitalizations [2, 3], and are also 
the cause in the USA of approx. 25% of severe life threatening 
injuries and disabilities [4]. They affect patients in every age 

group, with particular predilection in the following groups: 
over 75-years-old, 0–5, and 15–24-years- old [5, 6]. In the UK, 
brain injuries are the leading cause of death and disability 
among those under 40-years-old [7].

In the literature, the term Traumatic Brain Injuries 
(TBI) has replaced the definition of head injury in order to 
emphasize the essence of damage affecting such an important 
organ as the brain. International Classification of Diseases 
issue 10 (ICD-10) defines TBI as diagnosis from S00–S19. 
Meta-analysis published by Peeters et  al. [8] demonstrate 
that it is difficult to determine the frequency of head injuries 
which are geographically conditioned, and estimated in very 
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wide ranges from 47.3/100,000 up to 576/100,000 inhabitants, 
depending on the study [8]. Mortality rate, based on the 
above-mentioned meta-analysis, was estimated at 10.3 per 
100,000 cases. In the USA in 2017, 61,131 TBI-related deaths 
were recorded which accounted for about 2.2% of deaths 
in the entire population [9]. The population structure of 
European residents suffering from TBI have been presented 
by Majdan at al. [10], according to which men are more likely 
to suffer from this injury (61%) than women (39%); however, 
in the population over 65 years of age this proportion is 
reversed [12, 13]. Currently, head injuries affect mainly elderly 
patients, although they are also relatively common among 
young adults [5, 6]. It is noteworthy that TBI substantially 
contribute to total healthcare costs. The economic burden is 
linked with treatment, rehabilitation and loss of productivity 
caused by disability [14, 15]. The global cost of brain injury has 
been estimated at approximately 400 billion USD annually, 
representing 0.5% of the gross world product [7].

Head and neck injuries are a heterogeneous group of 
injuries, with respect to both clinical course and outcomes. 
A special group of injured persons are those with severe 
and potentially fatal injuries. For years, there have been 
attempts to create an ideal diagnostic tool and a system of 
treatment of the outcomes of injuries, which will guarantee 
the injured person treatment in a facility appropriate to the 
severity of the injury, as well as an appropriate treatment, 
and also allow prediction of the outcome. It would also 
allow the initial qualification of the patient for treatment 
in a reference centre, based on the severity of the injury. 
A significant progress in the treatment of the outcomes of 
injuries was the creation of the first scales for assessment 
of the severity of an injury. They reflect numerically 
the condition of the patient after the injury, taking into 
account damaged body regions, mechanism of the injury, 
age, physiological parameters and comorbidity occurrence, 
of which allows for directing the further diagnostic and 
therapeutic process and assessment of prognosis at the initial 
stages of treatment. Currently, there are several injury scales 
which are widely in use: Abbreviated Injury Scale (AIS) [16], 
Revised Trauma Score (RTS) [17], Injury Severity Score (ISS) 
[18], New Injury Severity Score (NISS) [19], Revised Trauma 
and Injury Severity Score (TRISS) [20] and International 
Classification based Injury Severity Score (ICISS) [21]. The 
severity of the brain injury is classified according to the GCS 
scale as mild, moderate or severe, where the mortality rate of 
the latter reaches even 40% [22, 23]. A special role is assigned 
to the ICISS score proposed by Osler in 1996, which is based 
on the International Classification of Diseases version 9 
(ICD-9). Later, Osler and some other authors showed a 
higher predictive value of the assessment of the severity of 
an injury using the International Classification of Diseases 
over other injury scales [19, 24]. Another scoring system 
based on ICD-10, Life Threat Index (LTI), was proposed by 
Nogalski in 2008 [25] and its usefulness was proved on a 
group of 485 patients treated in a regional trauma centre [26]. 
All the available scales, however, have their disadvantages, 
e.g. they take into account only the most severe injuries or 
do not take into account physiological parameters. Other 
presented limitations of currently available scores are the 
undertriaging or incorrect classification of patient’s condition 
as unsurvivable [27, 28]. Constantly increasing trauma visits 
to an Emergency Department require an appropriate scoring 
tool for improving treatment outcomes [29].

The use of artificial intelligence in medicine has been gaining 
recognition in the medical community, e.g. in radiology 
[30, 31] and diagnosis of selected disease entities [32–37]. 
It allows for rapid and precise analysis of many parameters 
which can potentially be used in predicting the outcomes of 
injuries. First studies using artificial intelligence in medicine, 
specifically neural networks, were published by Penny and 
Frost in 1996 [38], which proved that the effectiveness of the 
network was comparable to that of clinical decisions. The 
first work that referred to the use of neural networks from 
the assessment of patients with head trauma was that of 
Lang [39]. He was the first to show the effectiveness of neural 
networks in predicting treatment outcomes in patients with 
head injuries in comparison to standard logistic regression. 
Subsequent research groups proved the sense of using neural 
networks as a useful prognostic tool in post-injuries patients, 
both in general trauma [40–42] and brain injuries [43, 44].

In recent years some attempts have been made to use 
artificial intelligence to assess the prognosis of patients after 
trauma, based on the International Classification of Diseases. 
This stems from the fact that all prognostic scales known 
so far based on ICD are linear scales, and each individual 
element has the same significance and influence on the 
patient’s survival. However, clinical practice shows that the 
dependencies between risk factors are not linear. Considering 
all of the above, the ability to train the neural network and 
risk stratification for individual risk factors allow using this 
tool in predicting prognosis in a patient after injury.

The aim of this study was to evaluate a machine learning 
model based on ICD-10 codes for mortality prediction among 
patients suffered head injuries, in the group residents of the 
Lublin Province in Poland between 2006–2018.

MATERIALS AND METHOD

A retrospective analysis was performed on inpatients who 
had sustained head and neck injuries and treated in hospitals 
in the Lublin Province in 2006–2018. The group was selected 
based on statistical data gathered by the National Institute 
of Public Health / National Institute of Hygiene (NIPH – 
PIH), obtained from hospitalization reports generated by 
individual hospitals. Patients were qualified for this study on 
the basis of the codes from the International Classification 
of Diseases ICD-10 in the range between S00 – S19, which 
correspond to head and neck injuries. ICD-10 codes T00-T14 
were excluded because of their unspecified description of 
trauma range. A group of 143,362 patients with head trauma 
was selected. Furthermore, only main groups of ICD-10 
diagnostic codes, without a sub-codes, were included. Cases 
of superficial injuries classified as S00 and S10 due to their 
low mortality and high number of cases, and which notably 
would have complicated the design of the neural network, 
were also excluded. Taken into account the above, a total of 
20,447 cases were identified. As the study group was too large 
to design an ANN model, 6,824 cases were randomly picked 
and analyzed. The data structure of the most common cases 
analyzed is shown in Figure 1.

The studies conducted are preliminary analyses aimed at 
testing the applicability of ANN methods in analyzing the 
structure of hospitalizations resulting from head and neck 
injuries. In the analyzed case, the statistical analysis was made 
with Statistica 13.3 package (Tulsa, OK, USA) containing 
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modules including machine learning and artificial neural 
networks. For MLP network learning, 6,824 cases divided 
into three groups were used.

Analyzed database contained nine variables – age, gender, 
ICD code of injury, ICD codes of comorbidities, ICD code of 
injury mechanism, hospitalization unit, place of residence, 
and length of hospital stay. It was decided to include age, 
gender and the ICD-10 code of sustained injury into ANN 
to create a model based on simple, easy-to-gain predictors 
at  the  beginning of the therapeutic process. The input 
variables to the artificial neural network can be divided 
into qualitative and quantitative, in which the qualitative 
variables in the analyzed case were the diagnosis according 
to the ICD-10 classification (S01-S09 and S11-S19) and the 
patient’s gender (M / F). Age was adopted as the quantitative 
variable. In total, 21 neurons were adopted at the input of 
the network.

The MLP network had nine neurons in the hidden layer. 
There were three possible results at the classifier output:
•	 discontinuation of the therapeutic process;
•	 referral for further treatment;
•	 death.

The initial variable in the analyzed regression task was the 
result of hospitalization. Death, treatment discontinuation, 
and further ambulatory treatment were adopted as possible 
outcomes.

Data was divided into three groups: learning (70% of cases), 
testing (15% of cases) and validating (15% of cases), which was 
connected with the learning process of the neural network. 
The first group was used for training the model, the second 
for testing and changing its parameters, and discontinuation 
of the therapeutic process as the final one only to check the 
effectiveness of the network. The allocation of cases was 
carried out in a random manner. The number of individual 
injuries was therefore distributed randomly.

RESULTS

A total of 143,362 patients were identified between 2006 
– 2018 in the Lublin Province as having TBI, the majority 
of whom were males. Average time of hospital stay – 3,68 
days; average age – 35.49 years; mortality rate – 1.52%. 

Demographical analysis is presented in Figure 2.
The structure of most common ICD recognition codes 

among TBI victims in the study period was analyzed (Fig. 3).
Figure 3. ICD-codes structure among whole TBI population

Injury mechanism was coded in only 62,883 (43.86%) cases, 
with the most common injury mechanisms codes shown in 
Figure 4. Records with coded mechanisms were divided into 
groups (Tab. 1).

Table 2 presents the quality coefficients of the neural 
network operation for particular sets of input data. Learning 
algorithm, error function and activation functions in the 
hidden and output layers, were also included. The training of 
the neural network was possible through the use of the back 
propagation error method. The Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method was used for training the neural 
network.

Figure 1. ICD-codes structure among selected patients

Figure 2. Demographical analysis
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Table 2. Quality of neural network operation
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The regressive propagation algorithm defines a method 
of selecting neuron weights in a multilayer network using 
gradient optimization methods. The purpose of this 
algorithm is the sum of the squares differences (SOS) between 
the values of the network output signals and the actual values. 
Hyperbolic tangent function and the exponential function 
were adopted as the functions of neurons activation in the 
hidden and output layers. Table 3 contains summary of 
the classification of multilayer perceptron performance 
divided into three output groups. The number of correctly 
and incorrectly classified cases in each group, as well as the 
average value, are shown.

Table 3. Effectiveness of case classification(Network type MLP 21-9-3)

Network type MLP 21–9–3

Case 
classification

Discontinuation 
of therapeutic 

process
(N=2787)

Referral 
for further 
treatment
(N=2508)

Death
(N=1529)

Total
(N=6824)

Correct 1574 (56.48%) 1696 (67.62%) 1234 (80.71%) 4504 (66.00%)

Incorrect 1213 (43.52%) 812 (32.38%) 295 (19.29%) 2320 (34.00%)

This table shows that the highest classification efficiency 
was achieved in the group of deaths which amounted to 
over 81%. The average value of outcome prediction for all 
analyzed cases was 66%.

Table 4 presents the sensitivity analysis of the neural 
network. The value of the sensitivity coefficient confirms 
the suitability of a given parameter for ANN learning. The 
greater the value, the greater the influence of the variable 
on the correct operation of the network. In the analyzed 
case diagnosis is the most important input variable. Less 
important variables but still impacting the correct operation 
of the new model are sex and age of the patient.

Table 4. Sensitivity analysis

Network type MLP 21–9–3

Diagnostic Code Gender Age

Sensitivity 1.929 1.080 1.073

DISCUSSION

Recently, the effectiveness of machine learning in mortality 
prediction among patients who had sustained injury, has 
been proved in several studies [41, 43, 45, 46], most of which 
were conducted using a population-based registry and large 
numbers of input variables. Pearl et  al., using numerous 
variables in creating a model of mortality prediction, definitely 
improved the performance of ANN [47]. On the other hand, 
their multiplicity hampers implementation of this model into 
a clinical practice. Most of previously designed ML approaches 
in outcome prediction after TBI, usually relay on large number 
of variables which might not be available at admission, i.e. 
length of stay [48]. The presented model, based on three simple 
variables (age, gender and ICD-10 code of sustained injury), 
was created in refer to resolve an issue underlined in previous 
studies. Comorbidities remain major prognostic factors in the 
prediction of outcomes after head injury [40]. In a database 
of almost 144,000 cases, used to design a predicting model 
in the current study, concomitant disease were found in only 
3.6% of cases. It is believed that the low incidence of known 
cases with comorbidities will not significantly influence the 
outcome prediction in the current study.

Advantages of trauma scoring systems based on ICD-codes 
are widely known [49, 50]. It was therefore assumed that 
application of ICD-codes into a machine learning model could 
provide a high-quality, easy to use and precise tool for trauma 
mortality prediction. The only work published so far using 
the ICD-10 classification is that of Tran et al. [51], which also 
shows the high effectiveness of machine learning in predicting 
outcomes after trauma. Compared to the commonly used 
prognostic tools, such as ISS (AUC 0.828) and TMPM-ICD-10 
(0.861), the ML learning model (XGBoost) using iterations of 

Table 1. Injury mechanisms

Injury mechanism ICD codes N(%)

Motor vehicle accidents V01-V99, Y85 9254 (14.72%)

Falls W00-W09, W18 14370 (22.85%)

Falls from height W10-W17, Y30 4172 (6.63%)

Interpersonal violence
W32-W34, W50-W52, X88-Y05, 

Y07-Y09, Y20, Y22-Y23
9546 (15,18%)

Self-harm X70-X84, Y87 79 (0,12%)

Contact with animals W53-W59, X20-X29 682 (1.08%)

Contact with machines W24, W28-W31 262 (0,42%)

Contact with unpowered 
hand-tool

W20-W23, W25-W27, W44-W45, 
W60, Y28-Y29

6209 (9.87%)

Exposure to electricity, 
pressure, tempertature

W35-W41, W85-W92, X00-X19, 
X30-X33, Y25-Y27

56 (0.09%)

Others 18,253(29.02%)

Figure 4. 10 most common codes of injury mechanism.
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decision trees, achieved superior performance (AUC 0.863). 
Retrospective analysis of National Trauma Data Bank records 
was performed and a large group of 1.6 million patients was 
included in the analysis. The higher number of cases in the 
training set influenced the performance of the ML model. 
ICD-10 recognition code was the only available input variable. 
On the other hand, survival was the only output variable. 
In the current study, the ML algorithm based on a smaller 
group of patients with TBI was trained to predict potential 
death, survival or the need for further treatment. Three basic 
variables were used to train the network – age, gender and the 
ICD-10 recognition code, although the obtained effectiveness 
in predicting outcomes of about 81% is lower than in similar 
studies. Proposed model of mortality prediction is designed to 
develop previously described logistic regression models, based 
on ICD Classification. The ICISS score, found by Osler, was 
the first tool of mortality prediction among trauma victims 
where ICD codes were applied.

Recently published papers have focused on outcomes 
prediction among patients with brain injury, and proved the 
usefulness of ML models. Raj et al. presented a multicentre 
observational study of 472 patients treated because of TBI in 
Intensive Care Units in Finland [53]. The main purpose of the 
study was to develop a model for predicting dynamic changes 
in the prognosis of seriously injured patients. The researchers 
proposed a predictive model based on three variables with 
an accuracy of 81%. The presented algorithms were created 
using a frequently measured, by invasive techniques, 
parameters like Intracranial Pressure (ICP) or Cerebral 
Perfusion Pressure (CPP). Hsu et al. proposed a predictive 
model based on seven clinical and demographical measures 
[54]. Additionally, researchers tested different algorithms to 
determine the best predictor in mortality. Every tested model 
obtained a high accuracy of 91–93.2%.

To the best of the authors’ knowledge, none of the recent 
studies focused on the usefulness of ICD-10 codes application 
into machine learning models in mortality prediction after 
brain injury. Considering the above-mentioned studies, 
higher accuracy of neural network was achieved in case of 
higher quality and differentiation of input variables. On the 
other hand, an increase in the number of variables from seven 
to fourteen did not improve the accuracy of the proposed 
models. In further research it is crucial to determine and 
measure the highest influence on patient survival, to create the 
most accurate model of mortality after TBI. The development 
of a machine learning model based on highly selected, easy 
to obtain variables, could result in the implementation of this 
prediction model into a clinical practice. The results obtained 
in the current study constitute the basis for further research 
on the use of artificial intelligence in this area.

Limitations of the study. The researchers faced several 
difficulties in designing the neural network, mainly due to 
the large number of cases, the number of which differed 
significantly between individual classification groups. 
Additionally, assigning a large number of deaths to one specific 
case of diagnosis (S06) is an important element. Another 
limitation of this study was data collection. The study was based 
on retrospective data collected from the NIPH / NIH. Records 
from The Nationwide General Hospital Morbidity (NHGM) 
is the only registry of trauma hospitalization in Poland, and 
its compilers emphasize that quality and incompleteness of 
data is the result of inappropriate completion of statistical 

forms by medical professionals [55]. Irrelevant and incomplete 
ICD codes of injury or comorbidities on discharge forms are 
a commonly known issue in Poland.

Nevertheless, the obtained research results are promising 
and indicate that neural networks can be a good alternative to 
the currently used trauma scales in the assessment of a patient 
after injury. In further studies, the authors plan to evaluate 
the use of neural networks in other types of injuries, and to 
compare their predictive value with the tools used so far.

CONCLUSIONS

Gender and age do not significantly influence the predictive 
value of ICD 10 based ANN in mortality prediction, but could 
be supporting variables. ICD 10 diagnosis has the greatest 
weight of mortality prediction. ICD 10 based ANN shows 
a moderate mortality prediction rate in patients with head 
and neck trauma; therefore, further studies with other input 
data and ANN algorithm are needed prior to the clinical 
use of this tool.
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